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Abstract 

The interaction of X-rays in distorted anisotropic crystals 
is derived using a semi-classical approach based on 
Maxwell's equations. The X-ray wave is represented by a 
vector potential that is coupled to the charge and the 
magnetic moments of the electrons in the crystal by 
scattering factors obtained from non-relativistic quantum 
theory. Distortions are introduced through a slowly 
varying displacement field that shifts the positions of 
each unit cell in the crystal from its perfect-crystal 
position. The result is a generalization of the Takagi- 
Taupin equations in the form of a matrix equation for the 
electric field vector of the X-rays that includes magnetic 
scattering and the mixing of X-ray polarization states. 
The solutions of the equations in one-beam and two- 
beam cases are discussed. 

Introduction 

The dominant interaction affecting the propagation of 
X-rays in matter is Thomson scattering from the 
constituent electrons. In response to the electric field of 
the X-rays, the electrons emit dipole radiation with a 
strength that varies with the scattering direction, 
depending only on a geometric factor related to the 
direction of the electric field vector. However, when the 
X-ray energy is close to the energy difference between 
occupied and unoccupied electron states within the 
material, the interaction becomes more complicated. In 
particular, the presence of these states leads to absorption 
and changes to the phase of the electromagnetic wave of 
the X-rays, as characterized by the anomalous-dispersion 
corrections to the X-ray scattering factors. In many 
materials, the states available to an electron in an atom 
depend on the locations of the neighbouring atoms so 
that the interaction depends on the orientation of the 
electric field vector of the X-rays (i.e. the state of 
polarization) relative to the neighbouring atoms. 

This vector character of the X-ray field provides a 
useful probe for examining the variation, or anisotropy, 
of the environment about an atom. The absorption 
measurements in the EXAFS technique depend on the 
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direction of polarization of the X-rays (Stem, 1974) and 
have provided information on the anisotropy in single 
crystals (Heald & Stem, 1977, 1978; Cox & Beaumont, 
1980). The angular dependence of X-ray absorption 
spectra is discussed in the review by Brouder (1990). 
Dichroism and birefringence are related effects that occur 
in anisotropic crystals when the absorption and the 
refractive index, respectively, depend on the direction of 
polarization of the waves. Templeton & Templeton 
(1980, 1982, 1985a, 1988, 1989)have observed X-ray 
dichroism in selected crystals using linearly polarized 
X-rays and have measured the anisotropy of the 
anomalous scattering factors near the absorption edges. 
Similarly, Petcov, Kirfel & Fischer (1990) observed 
dichroism and birefringence in lithium niobate and 
developed a model of X-ray transmission based on the 
elementary optical matrices of Jones (1948). 

In X-ray diffraction experiments on anisotropic 
crystals, the existence of dichroism and birefringence 
can reduce the degree of symmetry in the crystal and lead 
to the observation of 'forbidden' reflections. It was 
predicted by Dmitrienko (1983, 1984) that this would 
occur for screw axis and glide plane forbidden reflec- 
tions. It was verified experimentally by Templeton & 
Templeton (1985b, 1987) and Kirfel, Petcov, Fischer & 
Eichhom (1989). A theory of kinematical diffraction in 
anisotropic materials based on Jones's calculus (Jones, 
1941, 1948) was developed and tested by Kirfel, Petcov 
& Eichhom (1991), Kirfel & Petcov (1992) and Kirfel & 
Morgenroth (1993). 

Although the interaction between the electric field of 
the X-rays and the charge on the electrons dominates, 
there are also couplings between the magnetic field of the 
X-rays and the magnetic moment of the electrons. These 
additional interactions are observed when X-rays scatter 
from magnetic materials (de Bergevin & Brunel, 1981). 
In particular, the electron spin and the orbital magnetic 
moments in magnetic materials have preferred orienta- 
tions that introduce anisotropy and lead to X-ray 
dichroism that can be measured near absorption edges 
(Schutz et al., 1987). In these materials, additional X-ray 
optical effects arise, such as the rotation of the plane of 
polarization (optical activity) and the change in the plane 
of polarization with the application of a magnetic field 

Acta Crystallographica Section A 
ISSN 0108-7673 ©1995 



T. J. DAVIS 355 

(Faraday effect). These effects were observed by 
Siddons, Hart, Amemiya & Hastings (1990). The 
magnetic interaction can lead to a coupling between 
orthogonal polarization states and it is sensitive to 
circularly polarized X-rays. X-ray magnetic circular 
dichroism was used by Wu et al. (1993) to investigate 
oscillations in the magnetic exchange coupling between 
two ferromagnetic layers. When the X-ray energy is 
close to the energy difference between electronic states in 
the crystals, resonantly enhanced magnetic scattering 
occurs (Namikawa, Ando, Nakajima & Kawata, 1985; 
Gibbs et al., 1988; Hannan, Trammell, Blume & Gibbs, 
1988). This depends on the polarization of the X-rays 
and provides a sensitive measure of the variation of the 
density of states above the Fermi level. A general review 
of polarization phenomena in X-ray optics is given by 
Belyakov & Dmitrienko (1989). The scattering of 
photons by magnetic materials is discussed in the 
reviews by Lovesey (1993) and Lovesey, Kechrakos & 
Trohidou (1994). 

The theories of X-ray scattering in dielectric and 
magnetic materials differ in their general approach. 
Dielectric scattering is usually based on a form of 
Maxwell's equations using either the electric field or the 
electric displacement of the electromagnetic wave in the 
crystal. Magnetic scattering is derived from quantum 
theory and is expressed in terms of a differential cross 
section. The aim of this paper is to derive a general 
equation for the interaction of X-rays with anisotropic 
materials that includes electric and magnetic interactions 
in a consistent manner. The theory is an extension of the 
Takagi-Taupin theory (Takagi, 1962, 1969; Taupin, 
1964) that contains slowly varying amplitudes to take 
account of distortions, introduced by strains, and 
variations in the properties of the crystals, such as the 
rotations of the direction of magnetization as observed in 
rare earths (Gibbs, Moncton, D'Amico, Bohr & Grier, 
1985; Gibbs, Bohr, Axe, Moncton & D'Amico, 1986; 
Bohr, Gibbs, Moncton & D'Amico, 1986). 

In the following sections, the interaction of the vector 
potential of the X-rays with the electrons in the crystal is 
derived using a mixture of classical electromagnetic 
theory, based on Maxwell's equations, and quantum 
scattering theory. From Takagi (1962, 1969), the 
electromagnetic field of the X-rays is expanded in a 
Fourier series of reciprocal-lattice vectors using Fourier 
coefficients that are slowly varying functions of position. 
The interactions of the X-rays with the electrons in the 
crystal are introduced through scattering factors derived 
from quantum theory. The effects of distortions in the 
crystal are included via a slowly varying displacement 
field. The result is a matrix equation that describes the 
variation and the coupling of the electric field vectors 
of the X-rays within the crystal. The solutions of the 
equation for the propagation (one-beam equation) and for 
the diffraction (two-beam equations) of X-rays in 
anisotropic materials are discussed. 

Theory 

The description of X-ray diffraction from crystals 
requires a model of the interaction of the electromagnetic 
field with the atoms in the lattice. The usual formulations 
follow the classical descriptions of Ewald and Laue 
(Wagenfeld, 1968). Laue's method is based on a 
phenomenological macroscopic approach that uses a 
dielectric susceptibility for the lattice. In anisotropic 
crystals, this dielectric susceptibility is a tensor that 
introduces coupling between polarization states (see the 
review by Kolpakov, Bushuev & Kuz'min, 1978). The 
natural extension of this to magnetic scattering is 
achieved with the introduction of the magnetic suscepti- 
bility. The problem with this approach is that the 
classical susceptibilities are based on electric and 
magnetic dipoles induced by the presence of the X-rays. 
Geil-Mann & Goldberger (1954) have shown that the 
scattering of photons from electrons involves not only 
dipole scattering but a mixture of quadrupole and dipole 
scattering. To take account of this, an extension of 
Ewald's approach from classical electron theory to 
quantum electron theory is useful. This approach was 
taken by Molitre (1939) and, more recently, it was used 
by Afanas'ev & Kagan (1967) to develop a theory of 
dynamical X-ray diffraction taking into account inelastic 
scattering from phonons and by Afanas'ev & Kohn 
(1971) for X-ray diffraction from distorted dielectric 
crystals. 

The starting point is the wave equation for the vector 
potential A(r,t). In the transverse gauge, the components 
of the vector potential are perpendicular to the direction 
of propagation of the wave so that 

V. A(r,t) = 0. (1) 

Then, in Gaussian units, the wave equation has the form 
(Jackson, 1975) 

V2A(r,t) - (1/c2)OEA(r,t)/Ot2 = - ( 4 r r / c ) J t ( r , t  ), (2) 

where Jt(r,t) is the current density transverse to the 
direction of propagation of the electromagnetic wave and 
c is the velocity of light in vacuum. As a consequence of 
(1), the vector potential can be represented by a sum of 
two vectors that are orthogonal to the direction of 
propagation. The unit vectors in these directions are the 
polarization vectors, ~ ,  where t~ = 1, 2. 

As in the method of Takagi (1969), the vector wave 
amplitude can be expanded in a Fourier series of 
reciprocal-lattice vectors based on the undistorted crystal. 
The distortions in the crystal structure are assumed to be 
slowly varying with position and are accounted for by 
taking the Fourier coefficients as slowly varying 
functions of position. This method has the advantage of 
allowing for variations in crystal composition and 
changes in the X-ray amplitude due to absorption and 
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Pendell6sung oscillations. The Fourier expansion is 

A(r,t) = ~ as~(r)~g ~ exp[-2rri(k 8 • r - kct)], (3) 
g,t~ 

where kg ----k 0 -+-g is the wave vector of the Fourier 
component, ko is the wave vector of the incident 
X-ray, k = Ik01 and g is a reciprocal-lattice vector of the 
undistorted crystal. The sum is over all reciprocal-lattice 
vectors and polarization vectors. 

If this expansion is placed in the wave equation (2) and 
only first-order variations in the amplitude are returned, 
the equation takes the form 

k h • Vah~(r) - #r(k 2 - k2)Ah~(r) 

= - ( i / c V )  f V'h~" Jt(r,t)exp[2Jri(kh " r -  kct)]dar, (4) 
V 

where Aha(r ) is approximately constant, i.e. 
IVAha/Ahc~l << k over the volume V of the unit cell. 
The sum over reciprocal-lattice vectors has been 
removed by multiplying by ~h~exp[2n'i(kh" r - -kc t ) ]  
and integrating over the unit cell at r. 

The current density arises from the perturbation to the 
motion of the electrons in the crystal by the electro- 
magnetic field of the X-rays. The perturbation contains 
linear and non-linear dependences on the X-ray ampli- 
tude. Since the non-linear terms are only significant at 
extremely high flux, only those terms that are linear in 
the X-ray amplitude will be considered. Then the 
magnitude and phase of the current density is propor- 
tional to the X-ray wave. The slowly varying amplitude 
Ag~(r) and the time-dependent phase exp[2rrikct] are 
factored out of the transverse current in (4), which is 
replaced by a sum over the electron currents Jn.~, induced 
by the unit vector potential ~:g,~, exp[-2rrikg, r]. Then (4) 
becomes 

k h • Vaha(r ) -- iTr(k 2 - k2)ah,~(r) 

= - # r k  2 y~ Fdh~,(r)Au~,(r), (5) 
g ,t~' 

where 

F d ~ ' ( r )  = (1/zrk2cv)  ~ ,  f ~:h.~ " J,.~,(r) 
a ,n  V 

x exp[2n'ik h • r]d3r. (6) 

The sum is over all electrons, n, in each atom and over all 
atoms, a, in the unit cell. The subscript a has been 
omitted for convenience. The function Fdg~,(r) is related 
by a constant to the structure factor and it is the fraction 
of the wave Ag~,(r) that scatters into Aha(r ) in the unit 
cell. For dipole scattering in dielectric materials, it 
reduces to the Fourier transform of the dielectric 
susceptibility. The superscript d signifies that the 
scattering function is calculated for the distorted crystal. 

The integral in (6) has the same form as the classical 
Hamiltonian for the interaction of the current density 
J,.~,(r) of an electron with an electromagnetic plane 

wave of unit amplitude (Fltigge, 1971). To account for 
the interactions properly, this expression is replaced by 
the equivalent quantum Hamiltonian. Then the scattering 
function can be expressed as a sum of four terms: 

Fhds~,, = _(re~.Z/~rV) ~-~(fr + f s  + f  a+ + f A - ) ,  (7) 
a , n  

where re is the classical electron radius and ~. -- 1/k  is 
the X-ray wavelength, f , r  and f , s  are the first-order 
scattering amplitudes associated with the interaction 
between the X-rays and the electron charge density 
(Thomson scattering) and the electron spin density, 
respectively. The second-order amplitudes f ,a+ and f , , " -  
are the anomalous terms associated with the excitation of 
the electrons in the material to intermediate states. These 
terms are given explicitly by Blume (1985) in the non- 
relativistic limit to order (hto/mc2)2: 

f ~  = ~:h~" ~;ga'(B[ exp[Zrri(h - g) .  r,]lA), (8) 

f s  = (_i~.c/~.)(~.h~, X ~;S'~') 

• (BI exp[2n'i(h - g)- r,,]s, lA), (9) 

fa+ = (I /m) y']~(BIH,,hlI)(IIH,,,glA)/AE+, (10) 
I ,n r 

f a -  = (1 /m)  ~-~(BIH,,gII)(IIH, h l A ) / A E -  ' (11) 
l ,n' 

where 

H,h = (~h,~ " P,, + 2rrhi[kh x ~h~]" S,)exp[2rrik h • r,,], 

(12) 

Hn'g - -  (~;ga' " P : - 2rrhi[kg × ~g,~,]. s,,,)exp[-2rrik s • r,,,] 

(13) 

and 

A E  + = E A - E t + hto - i1-'t/2, (14) 

z a E -  = EA -- E ,  -- ho, .  ( 15 )  

The sums in (10) and (11) are over the intermediate states 
I of the electrons and p and s are the momentum and spin 
operators, respectively. A comparison between (8) and 
(9) shows that the spin-density scattering is smaller than 
the Thomson scattering by the ratio of the Compton 
wavelength to the X-ray wavelength, ~.c/~.. The anoma- 
lous-scattering amplitudes, (10) and (11), contain the 
effects of electron resonances that occur when the X-ray 
energy is close to the energy difference between electron 
states. The factor F / is the resonance width of the 
intermediate state. These terms represent the excitation of 
electrons from state A to an intermediate state 1 and the 
subsequent decay to state B. The absorbed and emitted 
X-rays have polarization states that are coupled to the 
electron momentum and spin. 
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The anisotropy in the X-ray scattering can be seen 
explicitly in the equations above. The spin-density 
scattering (9) depends on the vector direction of the 
Fourier transform of the electron spin density. This 
introduces a preferred orientation in the crystal. Unlike 
the Thomson scattering (8) that is zero for a n'/2 change 
in polarization direction on scattering, the spin-density 
scattering couples orthogonal polarization states via the 
vector cross product. The coupling to the orbital angular 
momentum of the electrons, as well as additional 
coupling to the electron spin, is contained in the 
anomalous terms (10) and (l l) and also leads to 
anisotropy and a coupling between polarization states 
on scattering. The polarization dependence of the 
magnetic scattering is discussed by Blume & Gibbs 
(1988). 

Anisotropy also occurs in anomalous scattering by 
virtue of the orientation dependence of the intermediate 
electronic states, I. These states are sensitive to the 
locations of the neighbouring atoms. The anisotropies 
associated with EXAFS occur in these terms. The 
intermediate electron states include those arising from 
the reflection of the electron waves from the neighbour- 
ing atoms (Stem, 1974). The anomalous terms are 
significant only when AE + is small so that the anisotropy 
is observed only near the X-ray absorption edge. Note 
that there is the possibility of coupling between 
orthogonal polarization states of the X-rays by the 
absorption of one state and the emission of the other 
state, equations (12), (13) and (10). Enhanced magnetic 
scattering also results when the X-ray energy is close to 
the energy difference between electron states (Hannan, 
Trammell, Blume & Gibbs, 1988). 

Distort ions 

The effects of lattice distortions introduced by strains are 
contained implicitly in the scattering function Fd¢,e(r) 
for the distorted crystal. These can be shown explicitly 
by relating the distorted crystal scattering function to the 
undistorted crystal scattering function using a displace- 
ment field u(r), which is taken as a slowly varying 
function over each unit cell about r. The displacement 
field shifts the nth electron from its original position at r '  n 
to rn = r'~ + u(r'n) in the distorted unit cell. Then the 
distorted positions r,, of the electrons in the phase terms 
in (8), (9), (12) and (13) can be replaced by r'~ + u(r'n). If 
u(r'~) is slowly varying, so that [Ou/Orl << 1, it may be 
considered as a constant in each unit cell and it can be 
removed from the integrations implicit in the matrix 
elements. Since k h - kg = h - g, then the scattering 
function d Fh~8~,(r ) for the distorted crystal takes the form 

Fdg~,(r) = exp[27r/(h - g).u(r)]Fh~g~,(r), (16) 

where Fh~8~,(r ) is the scattering function for the 
undistorted crystal and it is calculated according to (7)-  

(11 ) based on the unstrained lattice. It is still retained as a 
function of r to take into account slow variations in 
crystal composition or rotations of the magnetization. It 
has been assumed that the distortions lead to a negligible 
change in the initial, intermediate and final states of the 
electrons that appear in (10) and (11). 

General  diffraction equat ion  

The general equation for X-ray diffraction is best 
represented in a matrix form for the two polarization 
states. Furthermore, with the time dependence given in 
(3), the electric field is linearly related to the vector 
potential. Thus define 

(Ahl(r)~ (17) 
Eh(r ) = -2rt ik  \Ah: ( r ) /  , 

then the general matrix equation for X-ray propagation 
and diffraction in a distorted, anisotropic, dielectric and 
magnetic crystal is 

I"  

Eh(r ) = -irrk ~']~ Fhg V 
Lg 

(r)Es(r) - 2flhEh(r)], 

(18) 

where l~ h is the unit vector in the direction of 
propagation, flh is the resonance parameter, 

flh = ( k2 -- k2)/2k2, (19) 

and 

:Fdlgl(r)  Fdlg2(r)~ 
Fhs(r) = ~kFdEgl(r) FhdEg2(r) / (20) 

is the scattering matrix from g to h. The off-diagonal 
terms in (20) are responsible for the mixing of orthogonal 
polarization states. Differences in the absorption factors 
appearing in the diagonal terms lead to dichroism. 
Equation (18) is a generalization of the Takagi-Taupin 
equations and has a form similar to the matrix equation 
of Kato (1973). 

The solutions to matrix equations, such as (18), are 
usually obtained by finding some linear transformation 
that uncouples the components. This means that the 
equations for the components are independent and can be 
solved separately. For example, in the theory of two- 
beam X-ray diffraction from isotropic dielectric crystals, 
the matrix (20) has zero off-diagonal terms when 
orthogonal polarization components are chosen, e.g. 
~ = ~ and ~2 = 7/'. Then the equations are solved for the 
two polarization states separately. 

In the following sections, the equations for the 
propagation of an X-ray beam through an anisotropic 
medium (one-beam theory) and the kinematical and 
dynamical diffraction of the X-rays (two-beam theory) 
will be considered. 
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One-beam equation 

For the case where there is no diffraction, the passage of 
the X-ray through an anisotropic material is described by 

0E(r)/0s = - i n k  F0o (r)E(r), (2 I) 

where s represents the distance along the direction of 
propagation of the beam. This equation has the same 
form as that for the propagation of light in an optical 
medium. The various components of Foo that give rise to 
absorption, refraction, dichroism and birefringence are 
analogous to the optical terms summarized by Jones 
(1948). The form (21) based on the formalism of Jones 
(1941, 1948) was used by Petcov, Kirfel & Fischer 
(1990) to describe X-ray birefringence and dichroism in 
uniform anisotropic materials. 

To solve this equation, note that the scattering matrix 
can be written as the sum of a diagonal matrix A and an 
off-diagonal matrix F. Explicitly, 

-izrkFoo = - irrk  ( Fo ~ O ) - irrk ( O F12 ) 
F22 F21 0 

= A + F, (22) 

where the position dependence is implicit and the 
h = g = 0 subscripts have been omitted for convenience. 
The important property of these matrices is that the 
product of two diagonal matrices or the product of two 
off-diagonal matrices yields a diagonal matrix; A A  and 
F F  are diagonal. In terms of A and F, (21) becomes 

a E / a s  = (A + r )E .  (23) 

To remove the off-diagonal matrix, an independent 
equation is required. This may be obtained by taking a 
second derivative of (23). Then the diagonal and off- 
diagonal matrices are separated and OE/Os from (23) is 
substituted in the off-diagonal term, yielding 

OZE/Os 2 = O(AE)/Os + (OF/Os)E + F ( A  + F)E. 

(24) 

Again using (23), it is possible to write E as a function of 
off-diagonal terms only, 

E = r-'[OE/Os- AE], (25) 

since the inverse F -l is also an off-diagonal matrix. 
Then, separation of the diagonal terms from the off- 
diagonal terms in (24) and substitution of (25) for E in 
the off-diagonal terms yields 

02E/Os 2 - {A + F A t  "-I + [OF/Os]F-~}(OE/Os) 

+ { F A F - l A  _ F 2 + [OF/Os]F-1A 

- O A / O s } E  = 0 .  (26) 

The coefficients in this equation are all diagonal. Its 
solution is not possible for arbitrary variations of the 
scattering matrix but for constant coefficients it simpli- 

ties to 

02E/Os 2 + iTrk(Fll + F22)OE/Os 

- n'2k2(FlIF22 - F12F21)E = 0 (27) 

for both polarization modes. The solution of this equation 
is straightforward: 

E(s) = A exp[-irrkrl+ s] + B exp[-irrkrl-s],  (28) 

where 

17 + = (Fll + F 2 2 ) / 2  -4- ([Fll - F22] 2 + 4Fi2F21)l/2/2 
(29) 

and A and B are constants determined by the vector 
amplitude at s = 0. 

The solution (28) with definition (29) has a simple 
interpretation. The refractive index of the medium is 
given by n = 1 + 0 / 2 ,  provided 17<<1. Thus, r/ is 
twice the change in the refractive index of the medium 
relative to the vacuum. The first term in (29) represents 
the effects of an average refractive index of the medium 
that induces a phase shift in the propagating wave 
relative to the vacuum wave. The second term results 
from the anisotropy of the crystal that splits the wave into 
two components that propagate with differing phase 
velocities. 

Two-beam equations 

If the incident beam scatters into a single diffracted 
beam, then (18) decomposes into coupled equations for 
the two vector amplitudes 

0Eo/0S o = -i:rk(FooE0 + FohEh), (30) 

OEh/Os h = -irrk([Fhh - 2/3h]E h + FnoE0), (31) 

where So and sh represent the distances travelled by the 
incident X-rays and the diffracted X-rays, respectively. 
The equations can be decoupled in the usual way by 
taking second derivatives. For example, the derivative 
02Eo/OShOSo is formed from (30), (31) is substituted for 
OEh/O s h and E h is substituted by a rearrangement of (30). 
This yields 

02Eo/0 s h 0 s o = - #rkO (FooEo)/0 s h + Mo0Eo/0 s o 

+ (brkMoFoo - ~k2FohFno)Eo, (32) 

where 

Mo = [OFoh/OS h -- izrkFoh(Fhh -- 2/~h)]Foh 1 • (33) 

Similarly, 

02Eh/OSoOSh = -izrkO[(Fhh - 2~h)Eh]/Os o + MhOEh/OSh 

+ [iTrkMh(Fhh -- 2/~h) -- 7t2k2FhoFoh]Eh, 

(34) 
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where 

M h = [OFho/OS o -- irrkFh0F00]F~01 . (35) 

The various terms in (32) and (34) can be interpreted 
in terms of the interactions in the crystal. The first term 
on the right of (32) represents the propagation of the 
wave through the anisotropic medium, in a similar 
fashion to the one-beam case, equation (21). The second 
and third terms represent the effects of the coupling of 
the transmitted wave on the diffracted beam that is 
propagating in the anisotropic medium, while the last 
term arises from the dynamical scattering of the incident 
beam into the diffracted beam and back again. A similar 
interpretation can be applied to (34). Note that the F00 
and Fhh terms are analogous to the refractive-index term 
X0 in an isotropic dielectric medium. Often X0 is included 
with the X-ray wave number (Takagi, 1969) leading to 
simpler expressions for the diffraction equations. This is 
no longer possible since F00 and Fhh are matrices that 
couple different polarization states. 

Although (32) and (34) are no longer coupled in the 
wave amplitudes, there still remains coupling between 
polarization states. This creates difficulties in obtaining 
analytical solutions except under certain conditions, such 
as slab geometry and constant coefficients. Solutions in 
this case are discussed in a review of the diffraction of 
Mtssbauer  y-rays in crystals by Belyakov (1975). 
Solutions may also be obtained by numerical evaluation 
of (30) and (31). 

In the case of kinematical scattering, the coupling 
coefficient F0h in (30) is neglected. For isotropic 
dielectric crystals, this results in an incident wave 
amplitude that is constant or that is attenuated with 
distance in the crystal by absorption. However, in 
anisotropic crystals, the incident wave amplitude varies 
according to (21), so there is the added complication that 
different polarization states of the incident beam may be 
propagating with different phase velocities and they may 
be coupled. The kinematical scattering at any point in the 
crystal will depend on the state of the incident beam at 
that point. Therefore, even the general kinematical 
solution is complicated. In the case where the matrix 
Fhh is constant, the kinematical solution can be obtained 
by finding a transformation matrix T that diagonalizes 
Fhh -- 2fib , 

T-l(Fhh - 2f lh)T = Ah,  (36) 

where A h is a diagonal matrix. The solution of (36) for T 
and A h is a standard eigenvalue problem. The kine- 
matical solution of (31) is then 

Eh(Sh) "-- -- irrk T exp[--irrk Ahsh] 
Sh 

x f exp[irrkAhs]T -i Fh0(S)E0(S ) ds, (37) 
0 

where the integration is along the path of the diffracting 

beam. This equation is valid provided the scattering is 
weak. Since magnetic scattering factors are smaller than 
the Thomson scattering factor by about two orders of 
magnitude, then (37) should be valid for analysing 
magnetic scattering experiments when the Thomson 
scattering can be treated kinematically. 

The author is most grateful for the many discussions 
with Peter Goodman, who has motivated this work. 
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Abstract 

An expression is derived for the intensity diffracted by a 
non-crystalline fiber made up of aggregates of helical 
molecules. This expression is useful for the efficient 
calculation of diffraction from such specimens and 
provides insight into the effects of aggregation on 
diffraction patterns. Example calculations show a number 
of implications for structure determination. 

I. Introduction 

X-ray fiber diffraction is used to determine the structures 
of polymers and other macromolecules that exist 
naturally as, or can be prepared as, oriented fibers or 
planar arrays (Millane, 1988). The molecules themselves 
usually adopt helical structures. In some specimens, the 
molecules are merely oriented with their long axes 
approximately parallel and are randomly rotated about 
these axes (Namba & Stubbs, 1985; Bhattacharjee, 
Glucksman & Makowski, 1992). In others, the molecules 
further organize laterally into very small crystalline 
regions and the orientations of the crystallites about the 
long axes of the constituent molecules are random 
(Leslie, Amott, Chandrasekaran & Ratliff, 1980). These 
are referred to as non-crystalline and polycrystalline 
specimens, respectively. Specimens exhibiting ordering 
intermediate between these two extremes also exist 
(Millane & Stroud, 1991). Structure determination 
involves calculation of the intensity diffracted by the 
specimen and, in the case of a non-crystalline fiber, this 
is equal to the cylindrical average of the intensity of the 
Fourier transform of one molecule. 

Other cases occur, however, where two or more helical 
molecules aggregate in a specific manner to form the 
fundamental particles that are randomly rotated in a fiber 
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specimen. The intensity diffracted by the specimen is 
then related to the Fourier transform of the aggregate 
structure, which sometimes can be a computationally 
intensive calculation. The objective of this paper is to 
derive an expression for the intensity diffracted by such a 
specimen, in terms of the Fourier transform of a single 
molecule and the geometric relationships between the 
molecules. This provides a substantial decrease in the 
amount of computation required, compared to a calcula- 
tion directly from the aggregate structure, and provides 
insight into differences in the diffraction by independent 
and by aggregated molecules. 

There are a number of macromolecular systems that 
exhibit this kind of aggregation, for which these results 
might be useful, and some examples where X-ray fiber 
diffraction has been used to derive structural information 
are as follows. Nucleic acids form double- and triple- 
stranded molecules that are made up of two or three 
(almost) identical strands (Leslie, Amott, Chandrase- 
karan & Ratliff, 1980; Park, Arnott, Chandrasekaran, 
Millane & Campagnari, 1987), and polysaccharides such 
as carrageenans and gellan form double helices (Millane, 
Chandrasekaran, Arnott & Dea, 1988; Chandrasekaran, 
Millane, Arnott & Atkins, 1988). Aggregates of poly- 
saccharide helices formed by lateral associations have 
also been considered (Paoletti, Cesaro & Delben, 1983). 
Collagen triple helices have a high potential for lateral 
interactions and form a variety of microfibrillar and 
fibrillar aggregates (Fraser, MacRae & Miller, 1987; 
van der Rest & Garrone, 1991; Kajava, 1991). The 
deoxygenated form of sickle-cell hemoglobin molecules 
polymerize into long strands, and these form dimers by 
side-by-side association, followed by alignment and 
lateral aggregation of the dimers to form fibers and 
macrofibers with specific lateral interactions (Magdoff- 
Fairchild & Chiu, 1979; Potel, Wellems, Vassar, Deer & 
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